Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Как выглядит ультрарелятивистский протон - 2

Saturday, 13 December, 00:12, igorivanov.blogspot.com
В прошлом посте я рассказывал, что такое партоны и как выглядит состоящий из них ультрарелятивистский протон. Оказалось, что протон "отказывается" сжиматься в продольном направлении, сохраняя некоторую примерно постоянную толщину при сколь угодно высоких энергиях. И это вовсе не вступает в противоречие с теорией относительности, а есть, в конце концов, следствие квантово-полевых эффектов.Однако на самом деле приведенный там анализ перестает работать при энергиях выше некоторого предела, при котором начинает сказываться насыщение глюонных плотностей внутри протона. Этот пост -- о том, что происходит с формой протона выше этого предела.Проследим, что происходит с партонными плотностями при большой энергии протона. При этом сам протон можно не трогать, а достаточно просто нам самим переходить из одной системы отсчета в другую.При каждом акте расщепления количество партонов прирастает на единицу. Количество актов расщепления, которые успевает сделать партон за время своего полета рядом с кварками, растет с энергией. Поперечный размер протона с энергией растет очень медленно, поэтому рано или поздно наступает такой момент, когда партонов (в особенности, глюонов) становится чересчур много. Как можно предположить, начиная с этого момента вся эволюция партонных плотностей меняется. Концентрация глюонов столь велика, что еще один добавочный глюон скорее рекомбинирует с кем-то уже существующим, чем потеснит их. То есть, новые расщепления партонов оказываются бесполезными -- прироста партонных плотностей они практически не дают. Такое явление называется насыщением партонных плотностей. Попытки разобраться с тем, как происходит переход к насыщению (т.е. какое именно нелинейное уравнение описывает эволюцию партонных плотностей при приближении к этому режиме), а также то, в терминах каких степеней свободы следует описывать протон за этой границей -- это всё является сейчас одним из самых активных разделов теории сильных взаимодействий. Одна из самых ярких моделей динамики партонных плотностей -- так называемая модель "конденсата цветового стекла" (color glass condensate). Подробности см. в статье Леонидова Плотная глюонная материя в соударениях ядер, УФН 175, 345 (2005).При какой плотности глюонов происходит насыщение? Вероятность рекомбинации нового глюона, по самой грубой оценке, можно записать как концентрация глюонов в поперечном фазовом пространстве помножить на константу сильного взаимодействия αs. Можно представлять себе, что фазовое пространство разбито на ячейки, в каждой сидит ноль, один или даже несколько глюонов (это называется "числа заполнения"), и что новый глюон рекомбинирует с уже имеющимся глюоном с вероятностью αs. Тогда насыщение наступит при типичных числах заполнения порядка 1/αs. Как я уже рассказывал в прошлый раз, глюонные плотности растут с уменьшением доли импульса протона (x). Значит, при каком-то значении x, когда глюонная плотность достаточно вырастет, дальшейший рост прекратится. Иными словами, не удастся излучить глюоны с еще меньшим значением x -- они тут же кем-то поглотятся. В результате возникает некий нижний порог по величине x (назовем его xкрит.), ниже которого можно считать, что глюонов почти нет. (Впрочем, этот xкрит. не фиксирован, а уменьшается с ростом энергии, но не очень быстро.)Но как мы помним, каждому партону с долей x соответствует своя длина волны: 1/(xE). В случае линейной эволюции (без учета рекомбинации) x мог быть очень маленьким, вплоть до μ/E, что приводило к длине волны (а значит, и к толщине облака таких партонов) порядка 1/μ. В случае насыщения максимальная длина волны составляет 1/(xкрит.E), а эта величина уже может быть маленькой, много меньше 1/μ, и более того, она уменьшается с энергией.В результате этого анализа получаем такую картинку. Если энергия протона очень велика, то глюонная плотность внутри него начинает выходить на насыщение. Поскольку быстро летящий протон состоит в основном из глюонов, то у него начинаются вырисовываться некие более-менее четкие очертания. И эти очертания действительно сжимаются в продольном направлении с дальнейшим увеличением энергии, хотя и медленнее, чем у тела фиксированной формы.И последний штрих. Глюонная плотность зависит от расстояния до центра протона, а точнее, до оси, вдоль которой летит центр масс протона. При одних и тех же кинематических условиях глюонная потность больше на оси и меньше на периферии. Это значит, что с ростом энергии насыщение начнется в центральной области протона раньше, чем на краях. Получается, максимальная длина волны глюонов в центре будет меньше, чем на краях. То есть, протон в центре будет тоньше, чем на краях. Протон станет напоминать двояко-вогнутую линзу.Все эти рассуждения, вместе с подробными расчетами (в дважды-логарифмическом приближении, правда) приведены в недавнем препринте "On the shape of a rapid hadron in QCD" (arXiv:0811.3737). Там рассматривался конкретно случай "формы протона" при глубоко-неупругом рассеянии (т.е. в столкновении виртуального фотона с протоном). Причем все вычисления проводились на самом деле в системе покоя протона, и величина, за которой авторы следили -- была длина когерентности флуктуаций фотона в кварк-антикварковую пару. При переходе в систему отсчета с ультрарелятивистским протоном именно эта величина и превращалась в продольный размер глюонного облака.Кстати, в той статье было сделано и еще одно занятное замечание. Если провести тот же анализ для тяжелых ядер вместо протонов, то там глюонная плотность будет больше, чем у протона, а значит, насыщение наступит раньше. Получается, что ультрарелятивистское ядро может оказаться тоньше (особенно по центру), чем каждый из составляющих его нуклонов. Такое, с наивной точки зрения, парадоксальное явление происходит потому, что глюонные поля от отдельных протонов деструктивно интерферируют.
Читать полную новость с источника 

Комментарии (0)