Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Гнутые кристаллы и физика элементарных частиц

Tuesday, 02 December, 00:12, igorivanov.blogspot.com
В рассказах про Большой адронный коллайдер есть одна вещь, которая меня самого впечатляет и которую я стараюсь демонстрировать при всякой возможности --это то, насколько разнообразные физические явления используются в работе ускорителя, причем даже в самых рутинных элементах. Расскажу сейчас об одном таком явлении, которое пока находитя в стадии изучения и разработки, но вполне возможно, что оно будет внедрено в LHC при его модернизации.Когда протонный пучок высокой энергии попадает в вещество, то протоны то и дело натыкаются на ядра, передавая им часть своей энергии и разрушая вещество. Собственно, именно так интенсивный пучок прожигает все на своем пути. Казалось бы, этот процесс универсален -- какая разница протонам, что именно разрушать?!image001.jpgОднако некоторая разница всё же есть. Если на пути пучка окажется монокристалл, причем ориентированный так, что одна из его осей будет параллельна пучку, то пучок пройдет сквозь намного свободнее, с гораздо меньшими "разрушениями". Такой режим прохождения называется каналированием. Так происходит потому, что кристаллографические плоскости представляют с точки зрения налетающего протона ровные параллельные потенциальный барьеры. Так что если поперечные колебания протонов в пучке невелики, то каждый отдельный протон не может "перевалить" через этот потенциальный барьер и вынужден лететь строго вдоль оси кристалла (см. подробности в статье Каналирование).pot1.pngРис.2 Потенциальная энергия для поперечного движения ультререлятивистских протонов вдоль кристалла и схематичное изображение траектории в кристалле. Каналирующие частицы (красные) и неканалирующие (синие). Источник: статья Phys.Rev.Lett. 98, 154801 (2007). Возьмем теперь кристалл и изогнем его (это будет, разумеется, упругая деформация, поэтому кристалл надо удерживать силой в изогнутом состоянии). Если кривизна небольшая, то каналирующая частица никуда не денется и послушно пойдет туда, куда ее уводят кристаллографические плоскости. Так возникает первое применение гнутых кристаллов для физики элементарных частиц -- для отклонения пучков частиц.pot2.pngРис.3 Та же потенциальная энергия, но для гнутого кристалла. и схематичное изображение траектории в кристалле. Источник: статья Phys.Rev.Lett. 98, 154801 (2007).Однако в гнутом кристалле может происходить и еще одна интересная вещь -- объемное отражение пучка. Это можно легко себе представить, если снова нарисовать потенциальную энергию, но уже для гнутого кристалла. Эта потенциальная энергия, правда, уже относится к радиальному движению, т.е. к поперечному движению относительно изогнутых кристаллографических плоскостей. А как известно из классической механики, для радиального движения необходимо к просто потенциалу прибавить еще центробежный потенциал. Из-за этого эффективная потенциальная энергия для радиального движения протонов будет иметь вид, как на Рис.3. Если теперь налетает неканалирующая частица, то она, достигнув какой-то кристаллографической плоскости, отразится назад. Конкретное место отражения зависит от начального угла, с которым протон влетает в кристалл, и может находиться в любом месте объема кристалла. Явление объемного отражения пучков гнутым кристаллом было теоретически предсказано Таратиным и Воробьевым в 1987 году и было экспериментально открыто все два года назад (Phys.Rev.Lett.97, 144801 (2006)). Сейчас это явление всесторонне изучается, в том числе в ЦЕРНе (да-да, в ЦЕРНе есть и другие эксперименты, кроме LHC, и их немало!) на специальной линии с 400-ГэВными протонными пучками из ускорителя SPS (который будет служить предварительным ускорителем для LHC). Например, в свежей статье Phys.Rev.Lett. 101, 234801 (2008) искался способ сделать объемное отражение более эффективным для того, чтобы использовать по возможности более короткие кристаллы.Объемное отражение дает еще одно применение гнутых кристаллов для физики элементарных частиц -- в качестве первичных коллиматоров. Вообще, коллиматор -- это устройство, "чистящее" пучок частиц ускорителе (см. страницу об устройстве LHC, последний раздел). Обычно это просто "болванки" вещества, которые пододвигаются на пару миллиметров к пучку и поглощают гало пучка -- частицы, выбившиеся далеко от главной оси пучка. Эти частицы рассеиваются в веществе коллиматора в самые разные стороны, и в том числе снова в направлении пучка. В результате для того, чтобы надежно отрезать гало пучка, приходится ставить коллиматоры второго и третьего уровня. Это сильно делает всю конструкцию громоздкой.В отличие от этого, гнутые кристаллы отклоняют частицы из гало пучка в определенном направлении, уменьшая радиационную нагрузку на окружающие элементы ускорителя. Ну и кроме того, они будут просто меньше греться, в отличие от обычных коллиматоров, которые буквально раскаляются, поглощая гало пучка.
Читать полную новость с источника 

Комментарии (0)