Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Растягивают ли гравитационные волны свет?

Воскресенье, 21 Февраль, 21:02, igorivanov.blogspot.com


detection-process.pngГравитационная волна искажает длину двух плечей интерферометра в противофазе, из-за чего точная компенсация света нарушается и фотодетектор регистрирует сигнал (источник). Рассказ о детектировании гравитационных волн в лазерном интерферометре часто вызывает такой совершенно естественный вопрос: Если гравитационная волна растягивает-сжимает пространство, то она также должна растягивать-сжимать и длину волны света. Получается, как расстояние между зеркалами, так и сама «измерительная линейка» изменяются пропорционально друг другу. Каким же образом интерферометр умудряется детектировать гравитационную волну?Кип Торн, с его полувековым опытом объяснения гравитационных волн и принципа их детектирования для самых разных аудиторий, говорит, что это вообще самый часто задаваемый вопрос на эту тему. В англоязычной литературе есть несколько публикаций, расписывающих ответ на этот «парадокс» на разном уровне, но на русском языке я что-то ничего не встретил. Поэтому я привожу пояснение здесь на максимально простом уровне, в общем-то пересказывая вот эту статью.* * *1. Для начала — один технический, но важный момент. Многие знают, что гравитация может влиять на темп хода времени (см. фильм «Интерстеллар») и, как следствие, на скорость света, измеряемую по часам постороннего наблюдателя (эффект Шапиро). Поэтому может возникнуть подозрение, что гравитационная волна растягивает не только пространство, но и время, и вообще делает прочие нехорошие вещи.К счастью, это не так. В поле гравитационной волны время течет как обычно и свет движется с неизменной скоростью. Так получается потому, что поле гравитационной волны допускает широкую свободу математического описания. Мы можем выбирать разные математические выражения для описания волны, но все они отвечают одной и той же физической ситуации. Это калибровочная симметрия, которую обычно рассказывают на примере электродинамики, но которая есть и для гравитации. Так вот, удобнее всего выбирать такое описание (т.е. такую калибровку), при котором никаких изменений ни со скоростью света, ни с течением времени не происходит. Все рассуждения и вычисления подразумевают обычно этот выбор.* * *2. Следующий шаг. Рассмотрим одно плечо интерферометра в какой-то момент до прихода волны. Пусть сквозь него прошла гравитационная волна. Только вместо настоящей волны, т.е. колебания метрики туда-сюда, мы возьмем максимально упрощенный случай: «гравитационную ступеньку», т.е. мгновенное изменение метрики, которое растягивает (тоже мгновенно) наше плечо на длину ΔL.ligo-stretch.pngВоздействие грав. волны в форме «гравитационной ступеньки»: плечо резко удлинилось, световая волна резко растянулась, однако дальше она все равно бежит к зеркалу и обратно с той же скоростью света. Время туда-обратно у каждого максимума волны будет больше, чем в перпендикулярном плече. Поэтому в момент прихода в расщепитель их фазы будут отличаться, и датчик увидит свет.  Маленькое отступление. Уже здесь начинаются тонкости. Растягивается — в какой системе координат? И значит ли это, что какие-то частицы чувствуют рывок и смещаются под действием этой силы? Ответ: растягиваются в исходной системе координат, где длины измеряются гипотетическим бесконечно жестким стержнем. В «свободно падающей» системе координат частицы, локально, никуда в пространстве не смещаются и никакого рывка не чувствуют. Увеличивается лишь дистанция между ними, вычисленная по исходной системе координат. Это тот же эффект, что и космологическое разбегание галактик по закону Хаббла. Так вот, в этот момент, сразу после прихода «гравитационной ступеньки», растянется и световая волна (переход от пунктирной к сплошной линии на картинке). Как мы и предполагали, «инструмент измерения» растянулся пропорционально измеряемой длине. Но только фишка в том, что световая волна — это не неподвижный стержень, с которым мы якобы сверяем длины. Интерферометр сверяет не длины, а фазы волн, прошедших по двум плечам. Интерферометру важно, сколько времени потребуется каждому гребню световых колебаний, чтобы дойти до зеркала и вернуться обратно. Поэтому да, сразу после прихода гравитационной ступеньки сигнал в интерферометре еще нулевой. Но затем растянувшийся свет летит дальше со своей неизменной скоростью, отражается и возвращается, но только пройти ему теперь нужно чуть большую дистанцию, чем в перпендикулярном плече. Поэтому за время прохода туда-обратно τ=2L/c сдвиг фаз в интерферометре вырастет с нуля до некоторого значения.А после этого все будет еще проще. Новый свет, попадающий в интерферометр после гравитационной ступеньки, будет иметь ту же длину волны, что и раньше. Этот свет уже нерастянутый. Так получается потому, что свет нам выдает лазер, и он его выдает на неизменной частоте светового колебания. Этот новый, нерастянутый свет идет по более длинному пути и, разумеется, тратит на это больше времени, чем свет в соседнем плече.Если совсем кратко: интерферометр измеряет не длины, сравнивая их с растяжимой линейкой, а времена прохода до зеркала и обратно по показаниям хронометра, неизменного и единого для обоих плечей.* * *3. Теперь вернемся к более реалистичной гравитационной волне. Там плавное растяжение-сжатие пространства происходит одновременно с движением света. Но только времена этих двух процессов сильно разные: время прохода туда-сюда τ=2L/c (т.е. 30 мкс) намного меньше периода гравитационной волны T (несколько мс). Рассмотрим какой-то момент в процессе колебания, когда расстояние между зеркалами уже подросло и продолжает расти дальше. «Свеженькая» световая волна, влетевшая в интерферометр, еще имеет первоначальную длину волны. За то время, пока она слетает туда-сюда, длина волны чуть-чуть подрастет, но этот относительный рост будет слабее относительного удлинения плеча интерферометра — ведь это плечо удлинялось в течение долгого времени, порядка четверти периода грав.волны. Поэтому удлинением световой волны в работающем интерферометре можно пренебречь с точностью до малого параметра τ/T.* * *4. Для тех, кто хочет почитать подробнее, а также увидеть некоторые вычисления, вот список ссылок.Изложение базируется на статье Peter R. Saulson, If light waves are stretched by gravitational waves, how can we use light as a ruler to detect gravitational waves? // Am.J.Phys. 65, 501 (1997); — это, кстати, бывший официальный представитель LIGO и один из руководителей постройки установки.Его же доклад ровно про этот «парадокс» и его же учебник. A common misconception about LIGO detectors of gravitational waves // Gen.Rel.Grav.39, 677 (2007) — упрощенные вычисления.Ну и для маньяков: Gravitational Waves, with Kip Thorne — выложенный онлайн со всеми видео лекционный курс Кипа Торна про физику гравитационных волн.

Читать полную новость с источника 

Комментарии (0)