Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Вращение закрученной волны

Monday, 29 July, 21:07, igorivanov.blogspot.com
Я тут на днях написал две популярных заметки для «Элементов» про закрученный свет и закрученные электроны, и еще отдельно про закрученный рентген. Заметки вызвали некоторый интерес и разные вопросы. В комментах к моему старому посту в блоге про закрученные фотоны было сделано хорошее наблюдение: увеличение «силы закрутки» сопровождается замедлением вращения. Вывод, казалось бы, парадоксальный. Я подумал, что полезно будет вынести в отдельный пост объяснение, почему никакого парадокса тут нет. (Пост получился немножко технический, с формулами, но что ж поделать.)Начнем с вращения в классической механике. Вот есть известный пример, с помощью которого иллюстрируют закон сохранения момента импульса вращающегося тела и роль момента инерции. Фигурист на льду быстро вращается, прижав руки к телу, но как только он их разведет в стороны, скорость его вращения сильно замедляется, хотя его момент импульса почти не изменился. Так получается потому, что момент импульса — это не просто угловая скорость вращения, это момент инерции помножить на угловую скорость. Как только вы разводите руки в стороны, вы резко увеличиваете момент инерции, значит, угловая скорость должна упасть.Теперь следующий пример, совсем близко к нашему «парадоксу». Возьмем планету на круговой орбите вокруг Солнца. Поступательная скорость его движения по орбите (первая космическая) и его угловая скорость равныeqn1.pngА момент импульса естьeqn2.pngТо есть, если вы переведете ту же планету на более высокую круговую орбиту, то угловая скорость уменьшится, но момент импульса увеличится, и, как видите, никакого парадокса тут нет. Теперь о том, что происходит с закрученной волной. Для простоты забудем про поляризацию, она на сущность «парадокса» не влияет. И еще будем рассматривать совсем простой вариант закрученной волны — так называемый бесселев пучок. Он представляет из себя суперпозицию плоских волн, приходящих под одинаковыми полярными углами, но под разными азимутальными углами к оси z, ну и с правильной настройкой относительных фаз. Бесселевы пучки хоть и менее физичны, чем лагерр-гауссовы пучки, которые обычно в этих задачах рассматриваются, но они проще для изучения и иллюстрации.Так вот, волновая функция бесселева пучка в поперечной плоскости (полярные координаты R и φ) имеет такой вид:ψ(R,φ) ~ ei m φ Jm(κR),где Jm — бесселева функция, а κ — модуль поперечного волнового вектора любой из плоских волн, составляющих бесселев пучок. Чем больше значение орбитального углового момента m, тем сильнее «закрутка». Но это также значит, что тем больше количество углов φ, на которых фаза волны принимает (в данный момент времени) какое-то выбранное значение (например, нуль) — их тоже ровно m. Для удобства на рис. 1 цветом показана фаза такой волны.phases.jpgРис. 1. Фаза закрученной волны с m=8 в поперечной плоскости (источник изображения)Теперь включим зависимость от времени (в этой поперечной плоскости). За один период волны эта картинка проворачивается ровно настолько, чтобы каждая точка дошла до следующей точки с такой же фазой, т.е. на угол 2π/m. Иными словами, угловая скорость вращения этой картинки равна Ω = ω/m, где ω — это обычная скорость измерения фазы волны со временем. Итак, чем больше момент импульса волны, тем меньше угловая скорость вращения!А теперь посмотрим на формулу внимательнее и заметим, что значение m влияет не только на угловую зависимость, но и на радиальную, ведь там стоит бесселева функция именно m-го порядка. Как выглядит график бесселевой функции для разных m? Для примера на рис. 2 нарисован квадрат функций J2(x) и J20(x). bessel2-20.pngРис. 2. Графики квадратов J2(x) и J20(x).Видно, что чем больше m, тем дальше из центра отодвигается первый, самый сильный максимум волновой функции. Из свойств бесселевых функций известно, что находится этот максимум примерно при x ≈ m. Пользуясь механической аналогией, можно сказать, что с ростом m, у пучка словно увеличивается момент инерции (для чисто бесселевого пучка это некорректное заявление, но это уже мелочи). Да, при этом скорость вращения замедляется, но этот момент инерции с лихвой компенсирует это замедление. И в результате орбитальный угловой момент растет пропорционально m как раз за счет этой «перекомпенсации» (формулы для механической аналогии написать совсем несложно).Такая вот небольшая тонкость.
Читать полную новость с источника 

Комментарии (0)