Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Зачем предыдущие постинги

Пятница, 20 Июль, 21:07, posic.livejournal.com
Есть такой популярный сюжет -- конструкция функтора экстраординарного обратного образа f!. Каждый уважающий себя гомологический алгебраист считает своим долгом по нему оттоптаться. Особенно популярен почему-то квазикогерентный случай (есть еще конструктивный, он отдельно). Не миновал общего поветрия и я.

Идея в том, чтобы построить не просто триангулированный функтор f!, а именно производный функтор Rf!. Причем построить в рамках формализма, двойственно-аналогичного тому, в котором строится обычный функтор обратного образа Lf*. Соответствующий формализм можно развить в рамках науки про контрагерентные копучки.

Грубо говоря, на абелевых категориях квазикогерентных пучков действуют неточные функторы прямого и обратного образа f* и f*, причем первый сопряжен ко второму справа. А на подходящих точных подкатегориях (приспособленных объектов) в точных категориях (локально) контрагерентных копучков действуют точные функторы прямого и обратного образа f! и f!, причем первый сопряжен ко второму слева (на тех объектах, на которых они определены).

В частности, f! -- самый настоящий, честный точный функтор между точными категориями "локально инъективных локально контрагерентных копучков" на (полуотделимых) схемах, между которыми бьет морфизм f.

Далее, производное ко-контра соответствие отождествляет (обычные; ограниченные или неограниченные) производные категории квазикогерентных пучков и контрагерентных копучков на квазикомпактной полуотделимой схеме. Более того, как это свойственно ко-контра соответствию, в ситуации морфизма схем оно отождествляет между собой производные функторы прямого образа Rf* и Lf!. Соответственно, у этого функтора прямого образа оказываются сопряженные с обеих сторон, один из которых "хорошо видно" на стороне квазикогерентных пучков, а другой -- на стороне контрагерентных копучков.

Таким образом можно легко и просто получить функтор Lf*, действующий на комплексах, ограниченных сверху, и функтор Rf!, действующий на комплексах, ограниченных снизу. Но избалованное чтением литературы 1990-х годов сознание требует большего -- производных функторов обратного образа, действующих на неограниченных комплексах. В случае Lf*, эту задачу решает теория, развитая Спалтенштейном; ну и в случае Rf! тоже. Но второй случай для этой теории сложнее, потому что для нее вообще точные категории сложнее абелевых.
Читать полную новость с источника 

Комментарии (0)