Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Физика цунами

Thursday, 01 January, 00:01, igorivanov.blogspot.com
Я подумал, что полезно будет рассказать про некоторые физические свойства цунами. Всё это стандартный материал, но тем не менее. Волны на мелкой водеВы будете смеяться, но в математической физике цунами считаются "волнами на мелкой воде". Этот термин означает, что длина волны намного больше глубины водоема. Длина волны цунами -- десятки и сотни километров (так получается просто потому, что сейсмические цунами рождаются от сдвигов участков коры протяженностью десятки-сотни км). Поскольку глубина океана -- несколько км, условие волн на мелкой воде выполнено.Цунами сильно отличаются от обычных ветровых волн. Во-первых, в открытом океане цунами имеет высоту меньше метра, а значит при длине волны в десятки км цунами практически незаметно. Во-вторых, если при ветровых волнах реально колеблется только приповерхностный слой воды, то из-за цунами вода движется вперед-назад по всей толще океана, вплоть до дна. Именно поэтому для распространения цунами так важен придонный рельеф океана -- цунами реально натыкается на горы, которые могут находиться на глубине в километры.СкоростьВообще, цунами движется за счет перетекания воды в поле тяжести. Поэтому скорость цунами определяется ускорением свободного падения g и локальной глубиной океана h:chart?cht=tx&chl=v%20=%20%5Csqrt%20%7Bg%20h%7DДлина волны тут не важна, по крайней мере до тех пор, пока она много больше глубины. Если в эту формулу подставить числа, то для глубины 4 км получится 200 м/сек! Однако как только волна выходит на мелководье, скорость резко падает: при глубине 10 м скорость составляет всего 10 м/сек.Это очень важная формула. Она показывает, что цунами не надо представлять себе "баллистически" -- т.е. так, словно большая масса воды "по инерции" разлетается во все стороны от очага с постоянной скоростью. Цунами -- это "коллективный эффект", зависящий не столько от самой среды, сколько от "граничных условий", т.е. от формы водоема.Ну и конечно не надо смешивать скорость перемещения волны и скорость течения воды. Сама вода движется довольно медленно: ее скорость примерно в x/h раз меньше скорости волны, где x -- это амплитуда волны, h -- глубина океана; т.е. в открытом океане примерно на 4 порядка меньше скорости волны. ОпрокидываниеИз такой формулы для скорости цунами вытекают еще два следствия.Первое -- при выходе на мелководье высота волны растет. Картинка тут простая: передная часть колебания, выйдя на мелководье, резко притормаживается, задняя ее догоняет, и вода поднимается. Можно еще сказать так: в пренебрежении потерями энергии на трение о дно и вязкость, продольное сжатие волны означает повышение плотности энергии, а значит, рост высоты волны.07-18.jpgВторое следствие -- опрокидывание. Это уже нелинейный аспект волн на мелкой воде. Упрощенно, картинка такая (см. рисунок). В той формуле под h следует понимать локальную глубину, которая различная на гребне и во впадине волны. Это значит, что гребень будет стараться опередить впадину при своем движении вперед. Ясно, что чем мельче водоем, тем сильнее этот эффект (глубина уменьшается, а высота волны растет). Поэтому при подходе к берегу верх волны не только поднимается, но и стремится опрокинуться вперед.О некоторых других свойствах поведения цунами см. в популярной статье с картинками Физика цунами из журнала "1 сентября: физика", а математические подробности см. в книге Дж. Уизем (Whitham), "Линейные и нелинейные волны".Интерференцияwaves.jpgЦунами, как и любая волна, может интерферировать. Если волна пришла в какое-то место сразу по нескольким путям (за счет преломления и отражения), то она накладывается сама на себя. В результате локально может наблюдаться как очень слабый, так и очень сильный всплеск. "Узор" из больших всплесков на глобусе из-за интерференции как правильно очень сложный и сильно зависит от профиля океанического дна (см. картинку, взятую из статьи Tsunami Scattering and Earthquake Faults in the Deep Pacific Ocean; ссылку подсказал Дмитрий Чубаров). Поскольку волна сильнее отражается от резких перепадов глубин, то даже относительне небольшие (высотой несколько сот метров), но крутые подводные горы или трещины, могут повлиять на картину интерференции и дальнейшее распространение волн. Это наверно самая главная трудность в надежном предсказании времени прихода и высоты волны в тот или иной пункт. Профиль океанического дна известен всё еще довольно плохо. В принципе в некоторых районах океана специальные суда всё промеряли довольно хорошо, но весь океан они пока не покрыли. Оценивается, что для покрытия всего океана нужно время 100-200 корабле-лет и вложения порядка 1 млрд. долларов. Однако есть и другой выход -- спутниковые измерения из космоса. Это вообще довольно нетривиальная вещь. Всё основано на гравитации: подземные горы слегка притягивают к себе воду, из-за чего непосредственно над горой на поверхности океана будет небольшое вспучивание, высотой порядка сантиметров. Это вспучивание океана надо заметить со спутников (а точнее, измерить отклонение от вертикали), причем для этого приходится вычитать намного более сильные эффекты от волн. sensing.pngВ принципе, такие данные уже есть (см. напр. недавнюю статью), с разрешением порядка 20 км, но для еще более надежного предсказания распространения цунами очень желательно разрешение улучшить. Имеется проект нового спутника (Abyss-lite), который за несколько лет и относительно небольшие деньги смог бы улучшить разрешение в 2-3 раза, а также нанести на карту подводные горы меньшей высоты, чем сейчас. На самом деле, такие данные будут очень ценны по многим причинам, цунами -- лишь одна из них. Подробнее см. в 32-страничном сборнике Bathymetry from space (pdf, 9 Мб), откуда и взят последний рисунок.14655419-292161413628358153?l=igorivanov.blogspot.com
Читать полную новость с источника 

Комментарии (0)