Поиск публикаций  |  Научные конференции и семинары  |  Новости науки  |  Научная сеть
Новости науки - Комментарии ученых и экспертов, мнения, научные блоги
Реклама на проекте

Пример не моноидальной модельной категории

Суббота, 20 Февраль, 21:02, posic.livejournal.com


В развитие обсуждения в http://posic.livejournal.com/1269531.html

Пусть k -- фиксированное основное поле. Рассмотрим категорию Ch≥0 = Ch≥0(k) неотрицательно когомологически градуированных комплексов k-векторных пространств, т.е, комплексов вида 0 → C0 → C1 → C2 → …

1. Категория Ch≥0 является ассоциативной, коммутативной, унитальной моноидальной (тензорной) категорией со стандартной моноидальной структурой, задаваемой обычной операцией тензорного произведения комплексов.

2. Категория Ch≥0 является модельной категорией со стандартной модельной структурой, в которой

- слабые эквивалентности суть квазиизоморфизмы комплексов;
- расслоения суть покомпонентно сюръективные морфизмы комплексов;
- корасслоения суть морфизмы комплексов, инъективные на компонентах градуировки, большей нуля (на компонентах компексов градуировки ноль корасслоение может быть любым морфизмом векторных пространств).

3. Категория Ch≥0, с этой моноидальной структурой, с этой модельной структурой, НЕ является моноидальной модельной категорией в смысле стандартного определения: аксиома pushout-product https://ncatlab.org/nlab/show/pushout-product+axiom не выполнена.

В самом деле, частным случаем этой аксиомы (когда domain одного из морфизмов -- нулевой объект) является условие, что тензорное умножение на кофибрантный объект должно переводить корасслоения в корасслоения. Далее, все объекты в Ch≥0 кофибрантны, морфизм k[0] → 0 (где k[i] обозначает комплекс с единственной ненулевой компонентой k в градуировке i) -- корасслоение, но тензорное произведение этого морфизма на объект k[−n], n > 0 корасслоением не является.

P.S. На Ch≥0 не существует модельной структуры, в которой все слабые эквивалентности были бы квазиизоморфизмами, а все корасслоения -- мономорфизмами. В самом деле, каков бы ни был класс расслоений, произвольный морфизм в Ch≥0 просто нельзя было бы разложить в композицию корасслоения с последующей слабой эквивалентностью, в такой модельной структуре.

Достаточно рассмотреть пример морфизма k[0] → 0. Разложить его в композицию мономорфизма со следующим за ним квазиизоморфизмом -- значило бы вложить k[0] в ацикличный комплекс. В Ch≥0 нет такого ацикличного комплекса.

Читать полную новость с источника 

Комментарии (0)